Integrable Hierarchies and Wakimoto Modules

نویسندگان

  • BORIS FEIGIN
  • EDWARD FRENKEL
چکیده

In our papers [20, 21] we proposed a new approach to integrable hierarchies of soliton equations and their quantum deformations. We have applied this approach to the Toda field theories and the generalized KdV and modified KdV (mKdV) hierarchies. In this paper we apply our approach to the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy [1] and its generalizations. In particular, we show that the free field (Wakimoto) realization of an affine algebra [36, 16] naturally appears in the context of the generalized AKNS hierarchies. This is analogous to the appearance of the free field (quantum Miura) realization of a W–algebra in the context of the generalized KdV equations. As an application, we give here a new proof of the existence of the Wakimoto realization. We also conjecture that all integrals of motion of the generalized AKNS equation can be quantized. In the case of ŝl2 the corresponding quantum integrals of motion can be viewed as integrals of motion of a thermal perturbation of the parafermionic conformal field theory [14]. Thus we expect that this deformation, and analogous deformations for arbitrary affine algebras, are integrable, in the sense of Zamolodchikov [37]. Let us first recall the main steps of our analysis of the Toda field theories from [20, 21].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bosonizations of ŝl 2 and Integrable Hierarchies ?

We construct embeddings of ŝl2 in lattice vertex algebras by composing the Wakimoto realization with the Friedan–Martinec–Shenker bosonization. The Kac–Wakimoto hierarchy then gives rise to two new hierarchies of integrable, non-autonomous, non-linear partial differential equations. A new feature of our construction is that it works for any value of the central element of ŝl2; that is, the leve...

متن کامل

Integrable Hierarchies and Wakimoto Realization

In our papers [20, 21] we proposed a new approach to integrable hierarchies of soliton equations and their quantum deformations. We have applied this approach to the Toda field theories and the generalized KdV and modified KdV (mKdV) hierarchies. In this paper we apply our approach to the Ablowitz-Kaup-Newell-Segur (AKNS) hierarchy [1] and its generalizations. In particular, we show that the fr...

متن کامل

Geometric Realizations of Wakimoto Modules at the Critical Level

We study the Wakimoto modules over the affine Kac-Moody algebras at the critical level from the point of view of the equivalences of categories proposed in our previous works, relating categories of representations and certain categories of sheaves. In particular, we describe explicitly geometric realizations of the Wakimoto modules as Hecke eigen-Dmodules on the affine Grassmannian and as quas...

متن کامل

Free Field Representation of Level-k Yangian Double DY (sl2)k and Deformation of Wakimoto Modules

Free field representation of level-k(6 = 0,−2) Yangian double DY (sl2)k and a corresponding deformation of Wakimoto modules are presented. We also realize two types of vertex operators intertwining these modules. † Yukawa fellow ⋆ E-mail: [email protected]

متن کامل

q-Wakimoto Modules and Integral Formulae of Solutions of the Quantum Knizhnik–Zamolodchikov Equations

Matrix elements of intertwining operators between q-Wakimoto modules associated to the tensor product of representations of U q (sl 2) with arbitrary spins are studied. It is shown that they coincide with the Tarasov–Varchenko's formulae of the solutions of the qKZ equations. The result generalizes that of the previous paper [Kuroki K.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999